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FOREWORD

This report describes an in-house effort conducted by personnel of the
Mechanical Branch (FIEM), Vehicle Equipment Division (FIE), Flight Dynamics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air
Force Base, Ohio, under project number 2402, "Mechanical Systems for Advanced
§ Military Flight Vehicles," task number 240201, "High Performance Landing Gear
for Advanced Military Flight Vehicles," work unit number 24020118, "Tire
Ground Performance Criteria." This report covers work performed during the
period of August 1977 to September 1979, under the direction of the author, .
Paul C. Ulrich (AFWAL/FIEMA), project engineer. The report was released by b
the author in December 1980.

The author wishes to acknowledge the various suggestions received during
this program from Aivars V. Petersons of the Flight Dynamics Laboratory and
o Dr. Howell K. Brewer of the Department of Transportation.

The contributions received from personnel of the ARirport Technology
Division, ACT-400, at the Federal Aviation Administration (FAA) Technical
Center who conducted the track tests and personnel of the Naval Air Engineering
Center (NAEC) at Lakehurst, New Jersey who provided the test track facility
are greatly appreciated.

The author also acknowledges the assistance contributed by Juergen Mollnau
(exchange engineer) of the Federal Republic of Germany, Ted Dull (co-op)
student at the University of Cincinnati, J. L. Leiter, and A. R. Blazer of

Systems Research Laboratories. ‘ _—
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SECTION I
INTRODUCTION

1. BACKGROUND

Aircraft adverse weather ground operations (wet or icy runways with
high gusty cross winds) have been a primary concern since the introduction
of jet aircraft as their landing speeds are usually well above the
hydroplaning speed of their tires. In addition, with the continued
improvement in flight instruments and instrument landing systems, more
landings are attempted under adverse weather conditions. This increase
in adverse weather ground operations coupled with the higher landing
speeds of new aircraft has led to increases in adverse weather landing
accidents. In order to reduce hydroplaning accidents, researchers have
continually sought to improve the traction of aircraft tires during
adverse weather ground operations.

Researchers have defined three types of hydroplaning; viscous
hydroplaning (thin film lubrication), reverted rubber hydroplaning, and
dynamic hydroplaning.

Viscous hydroplaning is defined as thin film lubrication (water
and/or contaminants) between the tire and the runway causing a degradation
in braking and steering capability. Viscous hydroplaning is normally
associated with aircraft operation on damp, wet, or icy runways. This
research effort deals with the evaluation of tread configurations which
promise a reduction in viscous hydroplaning.

Dry reverted rubber hydroplaning is defined as tire skidding caused
by reverted rubber build-up between the tire and the runway which can
occur during rapid tire spin-up at the time of touchdown or during
heavy braking (wheel lock-up). Changes in rubber compounding by the
tire manufacturers is one known way of reducing dry reverted rubber

hydroplaning. This type of hydroplaning was not considered in this
research effort.
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Dynamic hydroplaning is defined in two degrees or levels of hydro-
planing. Partial dynamic hydroplaning is defined as a partia) loss of
the tire's contact (footprint) area due to a sufficient increase in the
ground hydrodynamic pressure which is caused by a film of water being
trapped between the tire and the runway. This loss in contact area
causes a degradation in traction capabilities. Total dynamic hydroplaning
is defined as a complete loss of contact between the tire and the runway
as the ground hydrodynamic pressure has been increased sufficiently to
support the entire wheel load and the tire rides on a layer of water of
distinct thickness causing a complete loss of braking and steering capa-
bility. Past research has determined that the predominant parameters
which affect dynamic hydroplaning are aircraft speed, tire inflation
pressure, water depth, the runways surface texture, the tire contact
area (footprint), and the tire's tread pattern. Subsequent research
has also determined that as an aircraft's speed is increased, there 3
exists a critical speed (dynamic hydroplaning speed), unique for each )
tire inflation pressure, in which the runway surface micro texture and the 1

tire's tread pattern are no tonger important in reducing dynamic hydro-
planing. Total dynamic hydroplaning was not considered in this research
effort as runway grooving is considered a much more effective means of
reducing total dynamic hydroplaning than changes in tire tread patterns.
Partial dynamic hydroplaning was considered during the flooded track
tests at the Navy's Lakehurst facility.

NASA defined three levels of runway water depth in the joint USAF-NASA
program, "Combat Traction” (Reference 1); damp, wet and flooded as
determined by the NASA water depth gage. These were defined as:

damp - water depth less than 0.01 inch

wet - water depth between 0.01 inch and 0.10 inch

flooded - water depth greater than 0.10 inch
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A comparison of the various water depths that were used in the
Marcy siped tire traction program, the water'depths used in previous
traction tests on transverse groove (rain) tires at the NASA track, and
the water depths used in actual aircraft traction tests on various runways
in the combat traction tests, is shown in Figure 1.

The effects of runway texture on traction and hydroplaning have
been studied by researchers in various ways. NASA has measured numerous
runways and defined a typical operational runway in Reference 2 as having
an average texture depth of the order of 201 um (0.008 in) as determined
by the grease sampling technique described in Reference 3. In Reference
4, roads and runways have also been classified in very general qualitative
terms with respect to their macro and micro texture in four classes of

surfaces as:

MACRO MICRO
SURFACE TEXTURE TEXTURE
A Rough Harsh
B Rough Polished
C Smooth Harsh
D Smooth Polished

A quantitative measure of runway texture is the skid number as
defined in Reference 5. Typical measured skid numbers of various wet
concrete and asphalt pavements ranged from 25 to 65. In several cases
it was observed that for any particular textured surface, the skid
number decreased with increasing water depth until 0.01 inches of water
depth was reached at which point the skid number remained constant
regardless of additional increases in water depth. This fact undoubtedly
led to NASA's criteria for distinguishing damp surfaces from wet surfaces.

A means of changing runway texture is that of adding runway
transverse or longitudinal grooves. Runway grooving is recognized
as the most effective way of reducing dynamic hydroplaning by providing

adequate water drainage between the tire and the pavement; however, it

it o
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requires a large initial capital investment with high recurring maintenance
costs and has the detrimental side effects of increased tire wear and tire
damage (chevron cutting).

The addition of a porous friction course over worn runways has been
reported as being effective in reducing hydroplaning but this method has
not been universally accepted.

A comparison of the texture depths of the various test surfaces used
in the Marcy siped tire traction program, the test surfaces used in
previous traction tests at the NASA track, and the test surfaces of actual
runways is shown in Figure 2.

The effect of changing a tire's tread pattern to reduce hydroplaning
has been studied many years with various small improvements being developed.
Previous studies have shown that the most effective way of reducing hydro-
pianing through tread design is circumferential grooves of adequate cross
sectional area to sufficiently drain the water trapped between the tire
and the pavement. However, any increases in the number of grooves or
increases in the width or depth of the grooves compromises tread wear.
Consequently, the tire companies have traditionally established a tradeoff
between tread 1ife and the tire's hydroplaning tendencies.

Subsequent studies have also indicated that the benefits provided by
runway grooving and circumferential tire tread grooving for reducing dynamic
hydroplaning on flooded runways far exceed any benefits which could be
achieved by other tread design changes, such as transverse tire grooving.
Therefore, this program primarily addresses viscous hydroplaning with a
cursory look at the phenomenon of dynamic hydroplaning.

In References 2, 6, and 7, it is reported that adding more
circumferential grooves and/or transverse grooves in the tire tread is an
effective way of improving tire traction and reducing aircraft stopping
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distances. This was demonstrated through track testing and actual aircraft
tests on damp and wet runways. However, previous testing also determined
that tread wear and tread integrity during high speed operation have been
limiting factors in past tread alterations and, therefore, these factors
must always be evaluated for new tread designs.

In August 1977, a different method of reducing viscous hydroplaning
and improving the wet traction of tires was developed by Marcy Inc. This
method, unlike previous transverse groove designs, did not remove tread
material but rather sliced transverse cuts into the tire tread. A
photograph of the Marcy Inc machine siping an F-4 main tire is shown in
Figure 3. A close up of the helix sipe-cutting blade is shown in Figure
4, while a close up of an F-4 main tire with Marcy transverse cuts or sipes
is shown in Figure 5. This process conceivably promises improvements in
wet surface traction without compromising tread wear or high speed tread
integrity. Therefore, an agreement was made between the Air Force and Marcy
Inc in which the Air Force would provide and test F-4 main gear tires
which had been siped by Marcy Inc in order that the Marcy siping process
could be evaluated by the Air Force for improved wet surface tire
traction and the tread integrity of the tires'could be verified.

The tread integrity tests and laboratory wet surface traction tests
were performed by Air Force, AFWAL/FIEM personnel at the Landing Gear
Development Facility (LGDF), WPAFB, while the wet concrete track tests
were performed by Federal Aviation Administration (FAA), National Aviation
Facilities Experimental Center (NAFEC) personnel at the Naval Air
Engineering Center (NAEC) Facility in Lakehurst, New Jersey.

Potentially, this siping process can provide a means to significantly
improve aircraft safety and increase adverse weather operating capability

when operating on damp or wet ungrooved runways.
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2. O0BJECTIVE

The objective of this program was to laboratory test, track test, and
evaluate the improvements in viscous hydroplaning or wet surface traction
(aircraft directional control and stopping capability) offered by the
Marcy Inc tire tread siping process and to determine if this process
compromised the tread integrity of the tire.
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SECTION II
SUMMARY

é 1. Based on the results of the high speed tread integrity tests

a8 conducted on the LGDF 120 inch dynamometer, the Marcy tread siping
process did not adversely affect the tread integrity of either the F-4 or
F-16 main gear tires that were tested at sipe depths up to 9/32 inch deep
for the F-4 tire and 7/32 inch deep for the F-16 tire.

2. During the flooded quasi-static lateral force and braking tests on

the Tire Force Machine (TFM) aluminum (flat) surface, the Marcy siped tread
F-4 tires showed large improvements in lateral force and developed brake
torques over the standard tread F-4 tire. It is believed, however, that
these improvements are much higher than can be expected for typical runways
due to the extremely low textured aluminum surface and can only be correlated
with aircraft operation on extremely icy or snow covered runways.

3. During the flooded quasi-static lateral force and braking tests on
the TFM tungsten carbide (flat) surface, the Marcy siped tread F-4 tires
showed significant improvements in lateral force over the standard tread

F-4 tire. These results are considered more realistic since the texture
of the tungsten surface is within the range of measured runway textures.

4. During the damp high speed lateral force tests on the steel (curved)
surface dynamometer, the Marcy siped tread F-4 tire demonstrated significant
improvements in lateral force over the standard tread F-4 tire at all test
speeds and at all tire slip angles. This data relates to viscous hydro-
planing and can be correlated with aircraft operation on damp runways or
track tests on damp test surfaces since the estimated water depth achieved
on the dynamometer flywheel surface was less than 0.002 inch at speeds
greater than 80 mph and less than 0.01 inch for all test speeds. The
amount of improved lateral force obtained during these tests is also
considered somewhat high since the flywheel surface texture falls

slightly below the range of typical runway textures.
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5. During the damp high speed braking tests with the Mark IIl anti-skid

on the steel (curved) surface dynamometer, the Marcy siped tread F-4 tire
demonstrated significant improvements in deceleration rates, deveioped brake
torques and stopping performance when compared to the unsiped tire. The
trend for improvement in stopping performance provided by the Marcy sipe
tire correlated with actual aircraft data obtained during previous F-4

rain (transverse groove) tire performance flight tests at Edwards AFB
(Reference 7). The amount of demonstrated improvement, however, was ]
much higher for the laboratory tests, presumably, due to the Tow surface
texture of the steel flywheel.

6. The F-4 Marcy siped tread tire also demonstrated significant improve-
ments over the standard tread tire in tire spin-up times on the damp P
flywheel surface during the high speed brake anti-skid stops.

7. During the high speed traction tests at the NAEC {Navy) test track,
the Marcy siped (1/4 inch deep by 3/16 inch spacing) tread KC-135 main 1
tire showed a significant increase in friction coefficient over the
standard (unsiped) tread tire when tested on the damp (no measurable
water depth) portland cement surface at all test speeds.

The improvement in friction coefficient demonstrated by the 1/8 inch
deep by 3/16 inch spacing Marcy siped KC-135 main tire, however, was

insignificant when compared to the standard tire during the wet track 7
tests. i

On portland cement track surfaces containing standing water (average
water depth of 0.05, 0.10 and 0.15 inch), neither the 1/8 inch deep nor
1/4 inch deep siped tire prevented dynamic hydroplaning or showed an

improvement in friction coefficient over the standard {unsiped) tire.
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SECTION III
DESCRIPTION OF TEST TLRES

The tires used in TFM dynamometer brake stop tests, and the dynamo-
meter tread integrity tests were F-4 main gear 30X11.5-14.5, 24 ply
rating, type VIII aircraft tires. These tires were the standard three
grooves {circumferential) design currently in the US Air Force inventory.
The specified minimum mold skid depth of these tires is 0.26 inch per
Reference 8. The Marcy sipe configurations tested with this size tire
are listed in Table 1. A Marcy sipe configuration of 5/32 inch deep by
3/16 inch spacing is shown in Figure 6.

Additional dynamometer tread integrity tests were performed on siped
F-16 main gear 25.5X8.0-14, 18 ply rating, aircraft tires for possible F-16
application. These tires were the standard three groove (circumferential)
design currently in the US Air Force inventory. The specified minimum
mold skid depth of these tires is 0.20 inch per Reference 9. The Marcy
sipe configuration tested with this size tire is listed in Table 2 and
shown in Figure 7.

The tires tested at the NAEC test facility located at the US Navy
Lakehurst, New Jersey test track were KC-135 main gear 49X17, 26 ply
rating, type VII aircraft tires. These tires were the standard four
groove (circumferential) design currently in the US Air Force inventory.
The specified minimum mold skid depth of these tires is C.40 inch per
Reference 6. The Marcy sipe configurations tested with this size tire
are listed in Table 3 and the 4/32 inch deep by 3/16 inch spacing sipe
configuration is shown in Figure 8. The F-4 main gear tire with the
Marcy sipes was not track tested since the FAA test track fixture could
not be readily adapted to accept ¢ “ire with a 30 inch outside diameter,
In addition, the FAA was currently conducting wet traction tests on a
commercial six groove 49X17/26 ply rating tire and their set up and
fixturing was compatible with the Air Force four groove tire.
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In yrder to eliminate errors caused by tire-to-tire variability
when comparing unsiped tire to siped tire configurations, the unsiped
tire was tested to completion, removed from test, siped, and then
retested to identical test conditions. This procedure, however,
was not used during the track tests at the Navy facility.

PRI
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SECTION IV

TEST EQUIPMENT

The laboratory tire tests were conducted by AFWAL/FIEM personnel in
the Flight Dynamics Laboratory (FDL) Landing Gear Development Facility
using the flat surfaced TFM, the 192 inch conventional dynamometer
and the 120 inch programmable dynamometer, while the track tests were
conducted by FAA-NAFEC personnel and NAEC personnel at the NAEC test track
facility in Lakehurst, New Jersey.

1. TIRE FORCE MACHINE (TFM)

The TFM was used for the quasi-static flooded flat surface traction
cornering and braking tests. The force-measuring system consists of six
Toad cells (3 vertical, 2 fore-aft and 1 lateral) instrumented to measure
all six force-and-moment components developed by the tires. The machine
is designed to permit low speed (0.17 mph) tests at yaw angles between +20
degrees and any desired value of longitudinal slip. A photograph showing
an F-4 sipe tire being set-up in the TFM is shown in Figure 9. Flooded
traction tests of an F-4 siped tire are shown in Figure 10. The TFM
testing was performed on a smooth aluminum surface with an average
texture depth of 0.0004 inch and a tungsten carbide surface with an
average texture depth of 0.004 inch as measured by the grease smear
technique developed by NASA (Reference 3).

2. 192 INCH CONVENTIONAL DYNAMOMETER

The 192 inch dynamometer was used for the F-4 normal energy damp
surface brake stops and the tire spin up tests. The flywheel had an
average texture depth of 0,002 inch as measured per Reference 3.

1N
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3. 120 INCH PROGRAMMABLE DYNAMOMETER

The 120 inch dynamometer, incorporating a force measuring system
similar to the TFM, has the capability of programmable yaw, camber, radial
load, wheel velocity, wheel acceleration, and sink rate. The high speed
tread integrity tests and the high speed cornering tests on a damp surface
were performed on the 120 inch dynamometer. The measured texture depth
of the flywheel was 0.002 inch as measured per Reference 3.

Descriptions and capabilities of the TFM, 192 inch, and 120 inch
dynamometers are listed in the FDL Landing Gear Development Facility
Brochure (Reference 10).

4. NAEC TEST TRACK FACILITY

Test track number 1 at the NAEC facility in Lakehurst, New Jersey
was developed jointly by the FAA and the US Navy and it has the capability
of simulating a jet transport tire-wheel assembly at touchdown and rollout.
A 4000 1b steel yoke housed the tire-wheel assembly, applied the loading
and braking to the wheel, and contained the instrumentation system which
measured the loading, angular motion, and linear motion of the wheel.
The dynamometer or steel yoke was an adaptation of a NASA design. The
dynamometer and tire-wheel assembly shown in Figure 11 were contained
in a 60,000 1bs dead load fixture. The dead load fixture was accelerated
to speeds between 70 and 130 knots by four J-48 jet engines, each capable
of 6000 1bs of thrust. The dead load fixture was arrested by a cable-fluid
brake system at the recovery end of the mile long track.

The loading was applied to the wheel through two hydraulic cylinders
activated by pressurized nitrogen. The vertical load applied in these tests
was 39000 1bs.

The braking system was activated in a manner similar to the loading
system. Vertical strain-gauged load links measured the vertical load
applied to the wheel while horijzontal strain-gauged load links measured
the braking force between the tire and the surface tested.

12
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The test bed surface shown in Figure 12 was a slab 200 feet long, 30
inches wide, and 5 inches thick consisting of Portland cement concrete of
5000 psi crushing strength, with a broomed surface finish shown in Figure
13. The average texture depth of the test surface as determined by the
grease smear technique described in Reference 3, was 0.009 inch based
on the average of eight grease smear measurements. The test surface
was diked by rubber strips into five 40 foot test sections. Dimensional
tolerances of the surface, for each section, were held to within +0.16
inch from a horizontal plane. The first 40-foot section was kept dry
to insure that all load transients had stabilized prior to entering the
wet test sections. The second 40-foot section was damp but contained no
measurable water depth. The three remaining 40 foot test sections
contained average water depths of 0.05 inch, 0.10 inch and 0.15 inch,
respectively.

13




AFWAL-TR-81-3068

SECTION V
TEST REQUIREMENTS AND PROCEDURES

1. STATIC TESTS
Tire Contact Area

F-4 Tire: The contact area prints (footprints) were obtained for the
F-4 MLG, 30X11.5-14.5/24 PR tire when loaded against a flat surface and the
120 inch diameter dynamometer surface at three loads, 15000 1bs, 25000 1bs
(rated), and 35000 1bs; and at two inflation pressures, 145 psig and 245 psig.
The gross contact area of the tire footprints was measured and is defined as
the total area of the print including the tread ribs and the spaces (tread
grooves) between the tread ribs. The net area of the tire footprints was
also measured and is defined as the summation of the individual tread rib
areas where tread material contacts the test surface.

KC-135 Tire: The contact area prints (footprints) were obtained for
the KC-135 MLG, 49X17/26 PR tire when loaded against a flat surface at two
loads, 23760 1bs and 39600 1bs (rated), and at an inflation pressure of 170
psig (rated). The gross and net contact areas of the tire footprints were
measured.

2. DYNAMIC TESTS
a. High Speed Tread Integrity Tests - 120 Inch Dynamometer

F-4 Tire: 1In order to check the tread integrity of the Marcy sipe
configurations, F-4 main tires with various sipe depth and sipe spacing

configurations were tested to the dynamic test conditions specified by
USAF Drawing 62J4031, Exhibit "B" (Reference 11), which included 25 taxi
takeoffs, 25 landing taxis, 25 inboard camber taxis, 25 outboard camber
taxis, and 3 straight taxi rolls.
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F-16 Tire: In order to check the tread integrity of a Marcy sipe
configuration for F-16 application, an F-16 main tire, siped 7/32 inch deep
and at a 3/16 inch spacing, was tested to the dynamic test conditions
specified by the General Dynamics Drawing 16VLO02A (Reference 9) which
included 47 taxi takeoffs, 47 landing taxis, and 3 straight taxi rolls.

b. Quasi-Static Lateral Force and Braking Tests - TFM

F-4 Tire: Lateral force data was obtained for unsiped (standard) and
siped F-4 tires on the dry and flooded (1/2 inch water) aluminum surface
and on the dry and flooded (1/2 inch water) tungsten carbide surface of the
TFM at a rated vertical Toad of 25000 1bs and at a rated inflation pressure
of 243 psig and at tire slip angles of 3, 6, and 9 degrees with and without
braking. The braked lateral force tests on the flooded TFM were performed
by pre-determining the brake pressure required to produce maximum braking
without incurring circumferential tire slip (rotational tire slip) for
each set of test conditions. This brake pressure was then held constant
for both the unsiped and siped tire configurations for each unique test
condition.

c. High Speed Lateral Force Tests - 120 Inch Dynamometer

F-4 Tire: Lateral force data was obtained for unsiped (standard) and
siped F-4 tires on the dry and damp flywheel surface at water flow rates of
1/2 gpm, 1 gpm, 2 gpm, 3 gpm, and 6 gpm, at constant flywheel speeds of 5
mph, 10 mph, 30 mph, and 60 mph, at a rated vertical load of 25000 1bs,
at an inflation pressure of 268 psig, and at tire slip angles of 0°, 3°,
6°, and 9°. The 268 psig inflation pressure represents the test inflation
pressure required for flywheel curvature correction per Reference 8. The
various degrees of dampness were regulated with a valve, measured in
gallons per minute (gpm) with an in line flow meter and applied evenly
to the flywheel surface immediately in front of the tire/flywheel contact
patch with a variable opening nozzle. Calculations were made to estimate
the approximate water depths on the flywheel which were represented by
the various flow rates as a function of the flywheel surface speed.

Sample calculations are given in Appendix E. These results are plotted
in Figure 14.

carde
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d. High Speed Braking Tests With Mark III Anti-Skid - 192 Inch
Dynamometer

F-4 Tire: Normal energy brake stops per USAF Drawing 62J4031,

Exhibit "A" (Reference 11), were conducted using unsiped (standard) and
siped F-4 tires on a dry and damp flywheel surface at water flow rates
of 1/2 gpm, 1 gpm, 2 gpm, 3 gpm, 4 gpm, and 7.5 gpm. The same valve,
flow meter, and nozzle arrangemnt were used for the brake distance

stops as were used and described for the high speed lateral force tests.
The specific brake energy parameters and normal energy requirements are:

Kinetic Energy - 14,780,000 ft-1bs
Inertia Equivalent - 13,527 1bs
Initial Velocity - 181 mph
Deceleration Rate - 10.7 ft/sec
Braking Distance - 3,300 ft
Braking Time - 25 sec

Brake Torque - 56,000 in-1bs
Tire Load (Heavy GW) - 25,000 1bs
Tire Load (Light GW) - 16,000 1bs
Rolling Radius - 12.5 in

2

The normal energy brake stops were conducted using a complete F-4 brake
hydraulic system mock-up with the actual brake system hardware which
included a fully functioning Mark III anti-skid system, anti-skid box,
anti-skid valves, wheel speed sensor, brake valves, restrictors, check
valves, actual hydraulic line lengths, and the emergency brake system.
Brake stops were conducted at two loads representing a heavy gross weight
F-4 aircraft and a light gross weight F-4 and at two tire inflation
pressures to evaluate tire inflation pressure effects.

e. High Speed Traction Tests - NAEC Test Track

The NAFEC and NAEC personnel were not able to readily adapt the test
track fixtures to accept the F-4 MLG tire size., For the sake of expediency,
it was decided to conduct track tests on the KC-135 MLG, 49X17/26 PR
Marcy siped tires since this tire size fit into the existing equipment
with minor fixturing changes. In addition, baseline traction data was
available for this tire size from previous FAA traction studies.
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The unsiped and siped tires were accelerated down the test track at

constant tire speeds of 70 knots, 90 knots, 110 knots, and 130 knots, a tire

pressure of 170 psiqg and at a vertical tire load of 39000 1bs. At the end
of the test track, the 200 foot test section was divided into five 40 foot
test sections. The system was launched with the tire in contact with the
ground (concrete surface) and in a state of free roll supporting only the
4000 1bs weight of the test fixture for the full mile-lTength of the test
track. Several hundred feet before the test bed was reached, the pusher
cart was braked and separated from the test fixture with the test tire
assembly. One hundred and fifty feet before the test bed was reached,

the 39000 1b vertical load was applied o the test wheel. The tire/wheel
assembly was braked approximately 30 feet before reaching the test bed.
The fully loaded and braked aircraft tire/wheel assembly then entered the
200 foot test section at the desired speed. The tire encountered increas-
ing water depths at each successive 40 foot test section. The first 40
foot test section was kept dry and used as baseline data. The second 40
foot test section was damp and contained water but no measurable depth.
The last three 40 foot sections contained average water depths of 0.05
inch, 0.10 inch and 0.15 inch, respectively, as measured by the NASA

water depth gauge (Reference 1).

Brake pressures were varied, depending on the traction capability
of the tire-surface combination, in order to achieve maximum braking for
each set of operating conditions. Maximum braking was not attempted
on the dry surface.

F total of 64 tests were conducted in this series. The friction
coefficient, the horizontal force between the tire and the concrete
surface divided by the vertical load on the wheel, was measured over
the entire length of the 200 foot test section.

17
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SECTION VI
TEST RESULTS AND DISCUSSION

1. STATIC TESTS
Tire Contact Area

F-4 Tire: In order to establish baseline contact area data for the
different size tires that were tested, contact area prints were obtained
and measured for both the F-4 MLG tire and the KC-135 MLG tire. The
contact area (footprints) data on the F-4 tire is tabulated in Table 4.
The gross and net contact area vs normal load are plotted in Figure 15,
The relationship between tire contact area, tire inflation pressure and
dynamometer flywheel curvature is also shown in Figure 15. In Figure 16,
the gross and net contact areas are plotted vs tire inflation pressure at
three tire loads on both a flat and a curved surface. The gross and net
contact areas of the F-4 tire are plotted vs percent tire deflection at
a tire load of 25,000 pounds and at tire inflation pressure of 245 psig
(Figure 17) and 145 psig (Figure 18) on both the flat and curved surfaces.

KC-135 Tire: The contact area prints (footprints) obtained on the
KC-135 MLG tire were measured and the data is tabulated in Table 5. The
gross and net contact areas are plotted vs normal load and percent
deflection in Figures 19 and 20, respectively.

2. DYNAMIC TESTS
a. High Speed Tread Integrity Tests - 120 Inch Dynamometer

F-4 Tire: In order to determine if the Marcy sipe configurations
adversely affect the tread integrity of the F-4 tire, five tires with
various sipe configurations were subjected to the dynamic test conditions
specified in the F-4 tire qualification specification. Three of the five
tires successfully completed the 103 dynamic test cycles with only a
slight or negligible amount of tread chunking visible at the test
completion. The tread chunking is shown in Figure 6. The carcasses of
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the rema2ining two tires failed at depths below the tread sipes. None of
the failures was considered to be caused by the Marcy siping process.

The results of the tread integrity tests on the F-4 tires are tabulated
in Table 6. The carcass failures of the F-4 tires were not considered a
cause for alarm due to the severity of th. -4 qualification test and the
Laboratory's historical failure data on the F-4 tire.

F-16 Tire: The tread integrity of an F-16 main tire with a 7/32 inch
deep by 3/16 inch Marcy sipe was checked by subjecting the tire to the F-16
main tire qualification test. The tire, shown in Figure 7, successfully
completed the 97 dynamic test cycles with a negligible amount of groove
cracking and slight rib undercutting. None of the tread damage was
considered caused by the Marcy siping process. The results of the tread
integrity test on the F-16 tire are listed in Table 6.

b. Quasi-Static Lateral Force and Braking Tests - TFM

F-4 Tire: Quasi-static - flat surface - lateral tire force data was
obtained for both unsiped and siped F-4 tires on the dry and flooded
aluminum and tungsten carbide surfaces of the TFM. The test configurations
and results are listed in Table 7. The 8/32 inch deep by 3/16 inch
spacing sipe configuration demonstrated over 200 percent improvement in
lateral force and a 30 percent improvement in developed brake torque for
the flooded aluminum surface during maximum braking as shown in Figure 21.
The 9/32 inch deep by 3/16 inch spacing siped configuration demonstrated
improvements in lateral force for the flooded aluminum surface which ranged
from 64 percent to 111 percent for unbraked runs and from 128 percent to
440 percent during maximum braking as shown in Figure 22. The 9/32 inch
deep by 1/8 inch spacing siped configuration showed improvements in
lateral force for the flooded aluminum surface which averaged about 78
percent for unbraked runs and 100 percent during maximum braking as
indicated in Figure 23. The 5/32 inch deep by 3/16 inch spacing con-
figuration showed an average improvement of 61 percent for unbraked runs
on the flooded aluminum surface and an average improvement of 9 percent
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for unbraked runs on the flooded tungsten carbide surface as indicated in
Figure 24. During dry runs on both the aluminum surface and the tungsten
carbide surface, there was a slight increase in lateral force for the
siped tire configuration as shown in Figure 25.

¢. High Speed Lateral Force Tests - 120 Inch Dynamometer

F-4 Tire: High speed - curved surface - lateral tire force data was
obtained for both unsiped and siped F-4 tires on the dry and damp steel
surface of the 120 inch dynamometer. The test matrix and results are
listed in Table 8. The 8/32 inch deep by 3/16 inch spacing siped
configuration demonstrated significant improvements in lateral force
over the unsiped tire for all speeds and tire slip angles during the
high speed runs as shown in Figures 26 through 29 and listed in Table 8,

In an attempt to maintain a constant water depth on the flywheel for
the various speed runs, flow measurements and calculations were made to
generate a family of curves relating flywheel water depth vs dynamometer
flywheel speeds for the various water fiow rates. The results are shown
in Figure 14 and listed in Table 8. An approximate water depth of 0.002
inch was maintained for the runs. In order to check the effect of slightly
changing the water depth, a second set of 60 mph runs were made at a flow
rate of 2 gpm (0.001 inch water depth). The percent improvement of the
siped over the unsiped tire was reduced by approximately 10% when compared
to the 6 gpm (0.002 inch water depth), 60 mph runs as shown in Figure 30.
Attempts to significantly increase the water depth for the higher speed runs
were halted due to the large flow rates and water volumes required.

During the dry high speed runs, there was an insignificant increase
in lateral force at all tire slip angles as indicated in Table 8 and
Figures 31 through 34.
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d. High Speed Braking Tests with Mark III Anti-Skid - 192 Inch
Dynamometer

F-4 Tire: Normal energy high speed brake stops were conducted on
unsiped (standard! and siped F-4 30X11.5-14.5/24 PR tires on the dry and
damp flywheel surface of the 192 inch dynamometer. The brake stops were
conducted with a complete mock-up of the F-4 brake hydraulic and Mark III
anti-skid systems which used actual F-4 brake system hardware. These
‘ tests were performed to study the interaction between the anti-skid system
; and the tread sipes which affects the traction at the tread/flywheel inter-
face. Measurements and data were obtained to determine if the various tread
sipe configurations provided increases in deceleration rates and brake
torques resulting in decreased braked stop distances when compared to the
unsiped tire. The brake stops were conducted at two different tire loads

representing a heavy and light gross weight aircraft configuration and

{ at two different tire inflation pressures. Most of the brake stops were

| conducted with the water applied before the tire was ioaded against

the flywheel, however, some were conducted with the water applied after
fully loading the tire but prior to braking in order to determine what
effect this might have on braking performance. The test sequence and test
data for the dynamic anti-skid brake stops are tabulated in Tables 9 and
10.

The analog data for the brake stops on the tires code numbers 18-N
(cycles 49 through 60), 20-N (cycles 61-66), 21-N (cycles 67 through 69
and 73 through 75), and 22-N (cycles 70 through 72 and 76 through 90) is
shown in Figures C1 through C31 of Appendix C. Actual tire spin down or
tire slip data was recorded on channel 2 (test wheel speed) while the anti-
skid action or brake pressure and brake torque response was recorded on data
channels 3 and 4. Analog plots of flywheel speed vs stopping distance
comparing the unsiped and siped tire at each water flow rate for the 4
above cycles is shown in Figures D1 through D15 of Appendix D._
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The 8/32 inch deep siped tires (18-N, 20-N, and 22-N)} and the 5/32
inch deep siped tire (21-N) demonstrated significant improvements in damp
surface traction for the heavy gross weight aircraft condition at applied
water flow rates greater than 1/2 gpm by developing greater brake torques
which resulted in higher deceleration rates and much shorter brake stop
distances than the unsiped tires as shown in Figures 35, 36, 37, and 38
and tabulated in Table 11. The results of these tests did not indicate a
significant difference in traction performance on the damp surface between
the two sipe depths (8/32 inch vs 5/32 inch).

The 8/32 inch deep siped tire (18-N) also demonstrated significant
improvements in damp surface traction for the light gross weight aircraft
conditions and at the reduced tire inflation pressure conditions at
applied water flow rates greater than 1/2 gpm as shown in Figure 39
and Table 12.

In the preceding tests, the water was applied to the flywheel prior
to loading the tire on the flywheel surface. The water was sprayed on the
flywheel by means of the variable opening nozzle shown in Figure 40,

The analog data for the brake stops on the tire code number 1-R-2
(cycles 96 through 115) is shown in Figures C32 through C51 of Appendix C.
Analog plots of flywheel speed vs stopping distance comparing the unsiped
and siped tire, code number 1-R-2, are shown in Figures D16 through D24 of
Appendix D.

The 7/32 inch deep siped tire (1-R-2) demonstrated significant
improvements in damp surface traction over the unsiped tire for the light
gross weight aircraft conditions (Table 13) both in the case in which
water was applied to the flywheel before the tire was landed (Figure 41)
and the case in which water was applied after the tire had landed with full
load but prior to brake application (Figure 42). 1In case I, water applied
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before the tire landed, the unsiped tire failed to fully spin up and incurred
total hydroplaning or total tire spin down during the 2 gpm bra’.e stop
(Figure C34). During two case I, 3 gpm, brake stops, the unsiped tire failed
to fully spin up and incurred total hydroplaning (Figures C35 and C36).

In case 11, water applied after the tire landed, the unsiped tire fully

spun up to the flywheel speed after landing on the dry flywheel but

started immediately to spin down after water application and incurred

partial hydroplaning during the 2 gpm stop (Figure C39) and total
hydroplaning during the 3 gpm stop (Figure C40).

During case I and case II brake anti-skid stops, the 7/32 inch
siped tire (1-R-2) did not incur total tire spin down or total hydroplaning
at water flow rates of 1/2, 1, 2, 3, 4, and 7.5 gpm as shown in Figures
C41 through C50. The application of the water to the flvwheel
at a flow rate of 4 gpm during a brake anti-,kid stop is shown in Figure 43.
The flywheel and tire had decelerated from 181 mph to 40 mph when this photo-
graph was taken.

In Figure 44, the test wheel/tire speed is compared for the unsiped
and siped configuration of the tire code number 18-N when tested to the
heavy gross weight aircraft conditions for water flow rates of 1/2, 1, and
2 gpm. It is interesting to note the increased traction of the siped tire
during initial tire spin up as the unsiped tire took longer than the siped
tire to spin up to the synchronous flywheel speed. This difference in
initial tire spin-up is even more prevalent in the light gross weight aircraft
test runs as shown in Figure 45.

In Figures 46 and 47, a large difference is noted between the case
I (water before tire load) and case Il (water after tire load) tire spin ups.
During the case I tests, the unsiped tire was unable to spin up to the
synchronous flywheel speed at the high water flow rates while the siped
tire was able .o spin up to the flywheel speed (Figure 46). During the
case II tests, both the unsiped and siped tire immediately reached the

23




AFWAL-TR-81-3068

flywheel synchronous speed (Figure 47) since the surface was dry. As
far as braking performance (decreased stop cistance) was concerned, it
did not appear to make much difference whether the water was applied
before (case 1) or after {case II) the tir2z was landed for either the
unsiped or siped tire. Analog plots of flywheel speed vs stopping
distance comparing case I and case Il stops are shown in Figures D25
through D28 for the unsiped tire and Figures D29 through D32 for the
siped tire. A comparison of the tire spin up of the 3 gpm brake stops
for the unsiped and siped tires for case I and case II is shown in
Figures 48 and 49.

Analog plots of flywheel speed vs stopping distance for case I and
case Il test runs at the various water flow rates are shown in Figures
D33 and D34 for the unsiped tire and Figures D35 and D36 for the siped
tire.

Brake anti-skid stops were conducted on a dry flywheel surface on
the tires code numbers 22-N and 1-R-2 in order to establish baseline
(dry surface) data. The analog data is shown in Fioures C31 and C51.
During the dry stop on 22-N (Figure C31), it was interesting to note
the torque peaking which occurred in the middle of the braked run.
Torque peaking which normally occurs at the end of a stop is thought
to be caused by excessive localized non-uniform heating in the brake
friction surfaces which results in rapid change in the friction coefficients
of the rubbing surfaces and a rapid increase in the developed brake
torques which in turn can cause the tire to spin down or skid. However,
since the anti-skid system was operative, it cycled preventing a com-
plete tire/wheel lock up as shown in cycle 90 (Figure C31). The tire’wheel
spee”, brake pressure, and brake torque data for the two dry stops are
compared in Figure 50.
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e. High Speed Traction Tests - NAEC Test Track

KC-135 Tire: High speed damp, wet, and flooded track tests were
conducted at the NAEC facility by NAFEC and NAEC personnel on braked
standard tread (unsiped) and siped 49X17/26 PR KC-135 main gear tires
to evaluate the traction capability of a siped tire when tested on wet
portland cement at various water depths and test speeds. The NAFEC test
results at the NAEC facility are reported on in Reference 12. These
results of the wet track tests are replotted 1n Figures 51 through 58.
In Figures 51 through 53, the friction coefficient vs speed is plotted
at the various water depths for the standard (unsiped) tire, the 1/4 inch
deep by 3/16 inch spacing siped tire and the 1/8 inch deep by 3/16 inch
spacing siped tire, respectively. Friction coefficient vs water depth
is plotted in Figure 54 and the siped and unsiped tires are compared.

Friction coefficient vs speed is plotted for the siped and unsiped
tires for the damp, 0.05, 0.10, and 0.15 inch test conditions in Figures
55 through 58, respectively.

During the damp condition (no measurable water depth) track tests,
the 1/4 inch deep siped tire produced a significant increase in friction
coefficient over the standard tread tire while the 1/8 inch deep siped
tire showed only a slight improvement in friction coefficient over the
standard tire (Figure 55).

During the track tests on surfaces containing standing water
(average water depths of 0.05, 0.10 and 0.15 inch), neither siped tread tire
showed a significant increase in friction coefficient over the standard
tread tire and in most cases produced less traction (Figures 56, 57, and
58).
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SECTION VII
CONCLUSIONS

1. The Marcy tread siping process does not appear to adversely affect the
tread integrity of the F-4 or the F-16 main gear tires if the sipe depths
and sipe spacing is constrained to those configurations tested.

2. The 1/4 inch deep by 3/16 inch spacing Marcy siped tread configuration
reduced viscous hydroplaning and demonstrated significant improvements over
the standard (unsiped) tread tire in lateral force, in developed brake
torque and in stopping performance during laboratory tests and improved

the friction coefficient during track tests.

3. The improvement in traction, however, is negligible on the wet portland
cement surface when the sipe depth is reduced by tire wear to depths less
than 1/8 inch. The Marcy siping machine, however, does allow for resiping
a tire if sufficient tread material exists.

4. None of the Marcy sipe configurations prevented dynamic hydroplaning or
demonstrated traction improvements during the track tests when the tire
encountered standing water.

5. Since tread wear effects and chevron cutting effects can not be
evaluated for the Marcy sipes through laboratory or track tests, these
effects must still be evaluated before the overall payoffs can be
determined.
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SECTION VIII
RECOMMENDATIONS

The testing to date indicates that the Marcy 1/4 inch deep by 3/16 inch
spacing siped tread configuration reduces viscous hydroplaning and offers
significant improvements in friction coefficient, lateral force, developed
brake torque, and stopping performance whon encountering damp or wet
ungrooved runway surfaces without adversely affecting the tread integrity
of the tire. Since this demonstrated improvement can only be verified
through aircraft tests on damp or wet runways, it is recommended that
this effort be followed by flight demonstration tests.

Also, the US Navy has recently shown considerable interest in the
Marcy siped tire based on the results of the Air Force wet traction
tests, therefore, it is recommended that a joint US Air Force, US Navy
flight test program be pursued in order to share the flight test costs.
During these aircraft tests, additional questions such as what effects
tread siping has on tread wear and chevron cutting can be addressed.
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APPENDIX A

TABLES
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TABLE 1

F-4 MLG, 30X11.5-14.5/24 PR TIRE,
MARCY TREAD SIPE CONFIGURATIONS

TIRE SIPE SIPE

CODE nR DEPTH (IN) SPACING (IN TYPE TEST

1-N 5/32 3/16 Tread Integrity - Dynamometer
6-N 9/32 1/8 . " "

8-N 5732 1/8 " " "

11-N 5/32 3/16 " " "

12-N 5/32 3/16 " " "

3-N 8/32 3/16 Quasi-Static Cornering - TFM
5-N 9/32 3/16 " " " "
6_N 9/32 1/8 11} i n n
11-N 5/32 3/16 " " " "
18-N 8/32 3/16 Brake Distance - Dynamometer
20-N 8/32 3/16 " " "
21-N 5/32 3/16 " " "
22-N 8/32 3/16 " " "

1-R-2 7/32 3/16 " " "
24-N 8/32 3/16 High Speed Cornering - Dynamometer

30
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4

TABLE 2

F-16 MLG, 25.5X8.0-14/18 PR TIRE,
MARCY TREAD SIPE CONFIGURATION

TIRE SIPE SIPE
CODE NR DEPTH (IN SPACING (IN) TYPE TEST
i
1-N 7/32 3/16 Tread Integrity - Dynamometer
:
1
TABLE 3

KC-135 MLG, 49X17/26 PR TIRE,
MARCY TREAD SIPE CONFIGURATIONS

TIRE SIPE SIPE
CODE NR DEPTH (IN SPACING (IN TYPE TEST
- 4/32 3/16 Traction Tests - Test Track

1-N
2-N 8/32 3/16
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CYC CODE LOAD PRES

R

18-N
18-N
18-N
18-N
18-N
18-N
18-N
18-N
18-N
18-N
18-N
18-N
20-N
20-N
20-N
20-N
20-N
20-N
21-N
21-N
21-N
22-N
22-N
22-N
21-N
21-N
21-N
22-N
22-N
22-N

25000
25000
25000
16000
16000
16000
25000
25000
25000
16000
16000
16000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000

245
245
245
145
145
145
245
245
245
145
145
145
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245
245

TABLE 9

BRAKE STOP DATA,
30X11.5-14.5/24 PR UNSIPED VS SIPED TIRE

INITIAL FINAL FLOW BRAKE BRAKE
SPEED SPEED RATE DECEL,  TORQUE DISTANCE  TREAD
NR _LBS _ (PSIG) _(MPH) (MPH) (GPM) {ft/sec”) (in-lbs) _ (ft) CONFIG

180 57 % 6.6 39300 4752  Unsiped
180 57 1 3.8 23580 8255 Unsiped
180 57 2 2.6 13755 12065  Unsiped
180 57 L 4.8 28820 6535 Unsiped
180 74 1 2.4 16720 12071  Unsiped
180 136 2 1.4 1965 10687 Unsiped
180 57 ' 8.1 53710 3673 Siped 8/32"
180 57 1 5.6 35370 5601 Siped 8/32"
180 57 2 3.8 19650 8255 Siped 8/32"
180 57 L 4.8 34060 6535 Siped 8/32"
180 57 1 3.5 24890 8962 Siped 8/32"
180 99 2 1.9 9170 12799  Siped 8/32"
180 57 Y 7.8 62225 4022  Unsiped
180 57 1 3.7 23580 8478 Unsiped
180 113 2 1.7 5895 12426  Unsiped
180 57 b 7.8 59605 4022  Siped 8/32"
180 57 1 6.5 41920 4826  Siped 8/32"
180 57 2 5.1 29475 6151 Siped 8/32"
180 57 kS 8.1 55020 3873 Unsiped
180 57 1 4.7 34715 6674  Unsiped
180 68 2 2.4 11790 12453  Unsiped
180 57 Y 7.5 51080 4182 Unsiped
180 57 1 4.2 29475 7469  Unsiped
180 57 2 2.7 12445 11618  Unsiped
180 57 5 8.1 52400 3873 Siped 5/32"
180 57 1 7.0 41920 4481 Siped /32"
180 57 2 5.1 26200 6151  Siped 5/32"
180 57 b 7.9 50435 4481 Siped 8/32"
180 57 1 4.9 34715 6402 Siped 8/32"
180 57 2 4.0 23580 7842  Siped 8/32"
180 57  DRY 12.6 79910 2807  Siped 8/32"

22-N

16000

245
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TABLE 10

BRAKE STOP DATA
30%11.5-14.5/24 PR UNSIPED VS SIPED TIRE,
TIRE CODE NUMBER 1-R-2

INITIAL FINAL FLOW BRAKE BRAKE
CYC CODE LOAD PRES SPEED SPEED RATE DECEL2 TORQUE DISTANCE  TREAD
NR_ MR LBS _ (PSIG) _{MPH) (MPH) (GMP) (ft/sec”) (in-lbs) _ (ft) CONFIG

96 1-R-2 16000 245 180 79
97 1-R-2 16000 245 180 102

L 62880 8042  Unsiped
1
98 1-R-2 16000 245 180 147 2
3
3

3.5

1.9 14410 12457  Unsiped

0.9 3930 12902  Unsiped
- 1310 -

99 1-R-2 16000 245 180 - Uns iped
100 1-R-2 16000 245 180 - - 1310 - Uns iped
101 1-R-2 16000 245 180 70 L 4.9 76635 6039  Unsiped
102 1-R-2 16000 245 180 127 1* 1.4 16375 12159  Unsiped
103 1-R-2 16000 245 180 150 2* 0.9 - 11837 Unsiped
104 1-R-2 16000 245 180 156 3% 0.9 - 9641 Unsiped
105 1-R-2 16000 245 180 57 Pl 8.5 91700 3690 Siped 7/32"
106 1-R-2 16000 245 180 70 1* 2.5 34715 11837 Siped 7/32"
107 1-R-2 16000 245 180 142 2* 1.1 2620 11756  Siped 7/32"
108 1-R-2 16000 245 180 142 3* 1.0 2620 12660  Siped 7/32"
109 1-R-2 16000 245 180 57 L 9.6 83840 3267 Siped 7/32"
110 1-R-2 16000 245 180 60 1 2.6 31440 12012  Siped 7/32"
111 1-R-2 16000 245 180 136 2 1.3 2620 11249  Siped 7/32"
112 1-R-2 16000 245 180 142 3 1.2 2620 11350  Siped 7/32"
113 1-R-2 16000 245 180 142 4 1.2 1965 11350 Siped 7/32"
114 1-R-2 16000 245 180 153 7% 1.3 1965 7558  Siped 7/32"
115 1-R-2 16000 245 180 57 DRY 13.5 87770 2324 Siped 7/32"

*ater applied to flywheel after tire was landed and at full load. A1)l other test
cycles,the water was applied before tire was landed.
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APPENDIX B

FIGURES AND PHOTOGRAPHS
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A - High speed 120 (in) dynamometer tests at LGDF, WPAFB (Marcy siped tire)
B - Low speed TFM tests at LGDF, WPAFB (Marcy siped tire)

C - High speed track tests at Navy track, Lakehurst (Marcy siped tire)

D - High speed track tests at NASA track, Langley (rain tire tests)

E - High speed aircraft tests on various runways (combat traction tests)

Figure 1.

Water Depth Comparison for Various Facility Traction Tests
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Figure 4. Marcy Helix Sipe-Cutting Blade
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25.5 X 8.0-14/18

Fiqure 7. Marcy Tread Sipe, F-16 Tire, 7/32 Inch Deep by 3/16 Inch
Spacing
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TFM DATA
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
ALUMINUM SURFACE-AVERAGE TEXTURE DEPTH (0.0004 IN)
FLOODED (1/2 IN WATER DEPTH)
25,000 LBS VERTICAL LOAD, 243 PSIG PRESSURE

punnn

8000-
600 U—\O 7
R |

4000

—r—
BRAKE TORQUE (FT-LBS)

2000}'

LATERA. FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)

O - SIPED (MAX BRAKING)
@ - UNSIPED (MAX BRAKING)

Figure 21. Brake Torque and Lateral Force vs Slip Angle, Flooded Surface,
Tire Code Number 3-N (Siped 8/32" Deep X 3/16" Spacing)
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TFM DATA
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
ALUMINUM SURFACE-AVERAGE TEXTURE DEPTH (0.0004 IN)
FLOODED (1/2 IN WATER DEPTH)
25,000 LBS VERTICAL LOAD, 243 PSIG PRESSIOE

LATERAL FORCE (LBS)

3 6 9
TIRE SLIP ANGLE (DEGREES)

© - SIPED (NO BRAKING)
[ - SIPED (MAX BPAKING)

@ . UNSIPEC (NO BRAKING)
- UNSIPED (MAX BRAKING)

Figure 22. Lateral Force vs S1ip Angle, Flooded Test Surface, Tire Code
Number S-N (Siped 9/32" Oeep X 3/16" Spacing)
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TFM DATA
SIPED TIRE EVALUATION
30X11.5-14,5/24 PR AIRCRAFT TIRE
ALUMINUM SURFACE-AVERAGE TEXTURE DEPTH (0.0004 IN)
FLOODED (1/2 IN WATER DEPTH)
25,000 LBS VERTICAL LOAD, 243 PSIG PRESSURE

50004(

LATERAL FORCE (LBS)

L & e

3 6 9

TIRE SLIP ANGLE (DEGREES)

- SIPED {(NO BRAKING)
[ - SIPED (MAX BRAKING)

@ - UNSIPED (NO BRAKING)
@ . ynSIPED (MAX BRAKING)

Figure 23. Lateral Force vs Slip Angle, Flooded Test Surface, Tire Code ’
Number 6-N (Siped 9/32" Deep X 1/8" Spacing)
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TFM DATA
SIPED TIRE EVALUATION
30x11.5-14.5/24 PR AIRCRAFT TIRE
TUNGSTEN CARBIDE SURFACE - AVERAGE TEXTURE DEPTH (0.004 IN) AND
ALUMINUM SURFACE-AVERAGE TEXTURE DEPTH (0.0004 IN)
FLOODED (1/2 IN WATER DEPTH)
25,000 LBS VERTICAL LOAD, 243 PSIG PRESSURE

900D 'l [

8000 1

7000 -
6000 4
5000 1

4000 1

LATERAL FORCE (LBS)

3000 -

2000

1000

3 6
TIRE SLIP ANGLE (OEGREES)

(O - SIPED (NO BRAKING-TUNGSTEN SURFACE)
@ - UNSIPED (NO BRAKING-TUNGSTEN SURFACE)

() - SIPED (NO BRAKING-ALUMINUM SURFACE)
8 - UNSIPED (NO BRAKING-ALUMINUM SURFACE)

Figure 24. (ateral Force vs Slip Angle, Flooded Test Surface, Tire Code
Number 11.N (Siped 5/32" Deep X 1/8" Spacing)
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TFM DATA
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
TUNGSTEN CARBIDE SURFACE-AVERAGE TEXTURE DEPTH (0.004 IN) AND
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[J - SIPED (NO BRAKING-ALUMINUM SURFACE)
B - UNSIPED (NO BRAKING-ALUMINUM SURFACE)

Figure 25. Lateral Force vs Slip Angle, Dry Test Surface, Tire Code Number
11-N (Siped 5/32" Deep X 1/8" Spacing)

67




AFWAL-TR-81-3068

SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
1 STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
5 MPH CONSTANT SPEED
DAMP (1/2 GPM)

L DYNAMOMETER DATA - 120 INCH DIAMETER

LATERAL FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)
@©- SIPED (NO BRAKING)

@ - UNSIPED (NO BRAKING)

Figure 26. Lateral Force vs Slip Angle, Damp Test Surface, 5 MPH, 1/2 GPM,
Tire Code Number 24-N (Siped 8/32" ODeep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30x11.5-14.5/24 PR AIRCRAFT TIRE
‘ STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
§ 25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
: 10 MPH CONSTANT SPEED
DAMP (1 GPM)
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Y — N o,

3 6 9 6 3 0
TIRE SLIP ANGLE (DEGREES)

[J- SIPED (NO BRAKING)
@8- UNSIPED (NO BRAKING)

Figure 27. Latera) Force vs S1ip Angle, Damp Test Surface, 10 MPH, 1 GPM,
Tire Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 18S RADIAL LOAD, 268 PSIG INFLATION PRESSURE
30 MPH CONSTANT SPEED ;
DAMP (3 GPM) .

-
~N
[=
o
re
Y
P

LATERAL FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)

A - SIPED (NO BRAKING)
& - UNSIPED (NO BRAKING)

Figure 28. Lateral Force vs Slip Angle, Damp Test Surface, 30 MPH, 3 GPM,
Tire Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
60 MPH CONSTANT SPEED
DAMP (6 GPM)

a0 }
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3 6 9 6 3 0

TIRE SLIP ANGLE (DEGREES)

<> - SIPED {NO BRAKING)
. - UNSIPED (NO BRAKING)

Figure 29. Lateral Force vs Slip Angle, Damp Test Surface, 60 MPH, 6 GPM,
Tire Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14,5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
60 MPH CONSTANT SPEED
DAMP (2 GPM)

LATERAL FORCE (LBS)

—I 3 6 9 6 3 0

TIRE SLIP ANGLE {DEGREES)

O - SIPED (NO BRAKING)
N UNSIPED (NO BRAKING)

Figure 30. Lateral Force vs Slip Angle, Damp Test Surface, 60 MPH, 2 GPM,
Tire Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE .
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
5 MPH CONSTANT SPEED
DRY SURFACE

9000 4 L

LATERAL FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)
Q@ - SIPED (NO BRAKING)
@ - UNSIPED (NO BRAKING)

Figure 31. Lateral Force vs Slip Angle, Dry Test Surface, 5 MPH, Tire
Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION 4
30X11.5-14.5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
10 MPH CONSTANT SPEED
DRY SURFACE
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—d " — o "
3r - v — —
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TIRE SLIP ANGLE {DEGREES)

(3 - SIPED (NO BRAKING)
@ - UNSIPED (NO BRAKING)

Figure 32. Lateral Force vs S1ip Angle, Dry Test Surface, 10 MPH, Tire
Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
30 MPH CONSTANT SPEED
DRY SURFACE

9000*L

LATERAL FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)

A- SIPED (NO BRAKING)
A - UNSIPED (NO BRAKING)

Figure 33, Lateral Force vs S1ip Angle, Dry Test Surface, 30 MPH, Tire
Code Number 24-N (Siped 8/32" Deep X 3/16" Spacing)
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DYNAMOMETER DATA - 120 INCH DIAMETER
SIPED TIRE EVALUATION
30X11.5-14.5/24 PR AIRCRAFT TIRE
STEEL CURVED SURFACE-AVERAGE TEXTURE DEPTH (0.002 IN)
25,000 LBS RADIAL LOAD, 268 PSIG INFLATION PRESSURE
60 MPH CONSTANT SPEED
DRY SURFACE

90004

LATERAL FORCE (LBS)

TIRE SLIP ANGLE (DEGREES)

2- SIPED (NG BRAKING)
- UNSIPED (NO BRAKING)

Figure 34. Latera) Force vs Slip Angle, Dry Test Surface, 60MPH, Tire
Code Number 24-N (Sfped 8/32" Deep X 3/16" Spacing)
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BRAKE STOP DATA
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Figure 35. Brake Stop Data vs Water Flow Rate, Tire Code Number 18-N
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BRAKE STOP DATA

30X11.5-14.5/24 PR
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25000 LBS LOAD, 245 PSIG PRESSURE
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Figure 36. Brake Stop Data vs Water Flow Rate, Tire Code Number 20-N
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! BRAKE STOP DATA
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Figure 37. Brake Stop Data vs Water Flow Rate, Tire Code Number 22-N
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BRAKE STOP DATA
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SIPED VS UNSIPED TIRE
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Figure 38, Brake Stop Data vs Water Flow Rate, Tire Code Number 21-N
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Figure 39.

BRAKE STOP DATA
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Brake Stop Data vs Water Flow Rate, Tire Code Number 18-N
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BRAKE STOP DATA 3
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Figure 41. Brake Stop Data vs Water Flow Rate, Tire Code Number 1.R-2, ‘
Case I Tests
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Figure 42. Brake Stop Data vs Water Flow Rate, Tire Code Number 1-R-2,
Case II Tests
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Figure 44. Tire Spin Up Comparison, Siped vs Unsiped, Tire Code Number 18-N,

Tire Load 25,000 Lbs, Test Wheel/Tire Speed vs Time, 1/2, 1 and
2 GPM Water Flow Rates, Case 1-Water Applied Prior to Landing
Tire
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Figure 45. Tire Spin Up Comparfson, Siped vs Unsiped, Tire Code Number 18-N,
Tire Load 16,000 Lbs, Test Wheel/Tire Speed vs Time, 1/2, 1 and
2 GPM Water Flow Rates, Case 1-Water Applied Prior to Landing
Tire

87




AFWAL-TR-81-3068

LS 35 T
0 13 Al
-0
uNsIPED 8 ]
=0 d -
2t 10 et Aodtort
2
CYC MR 109 B 200+
1, GPM as
SIPED i
s A 4
::g 100+ V"W_L
2E *
2 \ B
CYCNR 98 B
2 GPM w5 20
UNSIPED @
£~
v
o 20
£= ] -
v 1\
< 1 Pl
CYC NR 111 B N
2 GPM Y~ 2004 > T L% T 2 8 o R
SIPED -3 q vt -
=~
2g 10
2 !
1A
o
CYC NR 99 2
3 GPM S
unstpen £ & 2004
= ~
©
-~ o
£§~§, 10
CYC AR 1128
3 GPM .g 1
SIPED 28 A ot -
3 b I,
-~ n ] Ty
2E
7 o |

Figure 46. Tire Spin Up Comparison, Siped vs Unsiped, Tire Code Number 1-R-2,
Tire Load 16,000 Lbs, Test Wheel/Tire Speed vs Time, 1/2, 2 and 3
GPM Water Flow Rates, Case 1-Water Applied Prior to lLoading
Tire
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Figure 48. Tire Spin Up Comparison, Siped vs Unsiped, Tire Code Number 1-R-2,
Tire Load 16,000 Lbs, Test Wheel/Tire Speed vs Time, 3 GPM Water
Flow Rate, Case 1-Water Applied Prior to Landing Tire
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Figure 49. Tire Spin Up Comparison, Siped vs Unsiped, Tire Code Number 1-R-2,
Tire Load 16,000 Lbs, Test Wheel/Tire Speed vs Time, 3 GPM Water
Flow Rate, Case 2-Water Applied After Loading Tire
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BRAKING PERFORMANCE OF FOUR GROOVE 49X17 AIRCRAFT TIRES ON
PORTLAND CEMENT CONCRETE AT VARIOUS SPEEDS AND WATER DEPTHS
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Figure 54. Friction Coefficient vs Water Depth, Wet Track Tests,
KC-135 Tire
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APPENDIX C ]

ANALOG TRACES

HIGH SPEED BRAKE ANTI-SKID STOPS

192 INCH DYNAMOMETER
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50, 1.0 gpm

S/N0870(18-N), Cyc.

Figure C2.
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53, 1.0 gpm

S/NOBTO(18-N), Siped N/A Cyc.

Figure C5.
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S/N0870(18-N), Siped 3/16" X 8/32", Cyc. 55, 0.5 gpm

Figure C7.
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56, 1.0 gpm

S/N0870{18-N), Siped 3/16" X 8/32", Cyc.

Figure C8.
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S/NOB7O(18-N), Siped 3/16™ X 8/32“, Cyc.

Figure C9.
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58, 0.5 gpm

S/N0870(18-N), Siped 3/16" X 8/32", Cyc.

Figure C-10.
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S/N0870(18-N), Siped 3/16" X 8/32", Cyc.

Figure C-12.
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S/N1174(20-N), Siped 3/16" X 8/32", Cyc.

Figure C-16.
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S/N1174(20-N), Siped 3/16" X 8/32", Cyc.

Figure C-18.




AFWAL-TR-81-3068

ISR ﬁ L R A ' T \ T T T na
; . ! w . ; _ | :
getanimljsesagsennyyssssasanss|ennsunnuny | snnnonunny fussssansas
e -kt b + fT‘ ﬁ —- ¢ b+ ] - + v I + H D T 4!\.+»3l.»|x + + T
L ol [ 1 : f e
w — -'Jw ﬂ - HY SR N jiif Il ] R _4 A_ — T I 0[,;-”41
Lt - +— ——— 4 +—t- : vt vy i -
BESENMIBNEE L ” T
. b ——o -+ 4 4 , !
; | | f'lf,ol.l 4_ L w i o j b=
i | . . | Cod 1 ~ 4Ll
i ——t + . | o \ |
. | , _A_vﬁ ' Col ! T t
mum 8 [ amananannn s e B | e
S Al Y SUGHEN BN ) SO . IP 44 ]l; —i ; AREE! m,
N . I8 N L \ X i ' . | Lo ! N i ke M
bt R e o o O o RS e e sk l S 1 s B
! il L L . I BEEERER o , ; | e >
aasenniint{indsnasens Isanaies ealatal | eatasaasalanann auas I
4 U t - — [ + I — i | LWL,, ! ;
BRI EREESE IRNERERS EEsuanees | santesesnn Inssasunens B
hﬂ u W b T T T T P pjﬂ 1 + —— M_ ;
2l ] It I : ! : I N ! , N I
INEEveS ,< T :frg)_,{mf 1 J t —f S
T X Ub | 1 T : . H4v ' i o —+ — * e — T t hy
< M | ) fd L«v T t ” ) ; T +“ﬂ<4ll,ﬁ oo =1 : | t $ : M
= SPEN RTINS . i IR W | =
HES SERNERiiN I RERNESENES | npsunn ESENRS | RREREY z
B T T BERES H T “ f - t - & =
e T sguss=Enn gant i asussas s -
R HEERE | BERE'S T T T TR T
Frd mevas |asnad =t o :
BERV.ERNE i 11E T T et | et 1
T ‘ 1 S S R I anane: bt H =
+ At ——— ' X . . ﬁ } o . i ) I . : | A 15\
b , ]ﬂ..A . e PR 1 DN I [PUNPUR TR N A I T 1 o3
i ! i e R T T -
A pee e g e
{ et . T ﬁf ! ,. Ilwl N I — L,!,‘ 7 | s H, I A
‘_j.w\ TL.I. . " 4 . W ! _k R m 4 : MJ\F
| RSN RS NS . | L | o [ | =N
4 4 — — PU ~ bt
h\» v , ' , P B o T Tt B ERR K
b b e |- o A o ] + ; b : - o
| M NET.ann | : H o @
LR S S . 1 ! 1 4 4 + =
* tl p —— . s T W.
e
i
]
T J% ~ L
i T l§ 1 I |
s 8 s 3 3 SRV = 8 g 2 SR
(ydw) (2as/ped) (1sd ¥)
) . ! sqL-34 ) ("sqx) )
T Code ( (*3%)
LYM-£ (4 pds " [yM 1S3l 34NSSIUd 3%edy anbuoy ayeug peO7 ‘uwdoN *1s1g 'do3s




68, 1.0 gpm

AFWAL-TR-8)-3068

o
S
<
S~
=z
1 °
/ 4 1 a g
i 4 - & » -
J T -
.| —
= -y =
4 — ~
) a L] 2
] L - H £
p w
= .
A S
| o ) &
o ]] 4
1 4 )
w u =
1 1 1
o =1 =1 (=] o o™ o~ — L= [ =]
[=) o (=] o o — (2] o~ — —_—
o~ — ™! o~ —
(udw) (0as/pea) (1sd ¥) (sq1-33 ) (">91%) (33)
*pds “1ym-A14 *pdS C jyM 1S3y 34NSSIAg 3yeug anbuo] ayeug peO] WMoy *3sig "do3s




AFWAL-TR-81-3068

13-

o )

M LAl

v

-4

121516 it

s

h
>

wl
(%]
o
N _— p
Pt
1 J
g 8 g 8 8 ,oN oo 2 S b &
(ydin) Vaas/Fea (4sd x) (sq1-34 %) (*saLx) (*34%)
pds’ “Lyn-£1 4 *pdS " [ym s3] AUNSSaud INR4g anbuao} axyedg peoOT umoy *3s)g -doys

69, 2.0 gpm

S/N1185(21-N), Siped N/A, Cyc.

Figure C-21.
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Figure C-22.
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S/N1185(2)-N), Siped 3/16" X 5/32", Cyc.

Figure C-26.
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Figure C-27.
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S/N1293(22-N), Siped 3/16" X 8/32", Cyc.

Figure C-28.
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Figure C-33.
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Figure C-34,
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Water on After Landing

Figure C-41.
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S/N6AQO13(#1-R-2), Siped 3/16" X 7/32", Cyc.

Water on After tanding

Figure C-44.
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S/N6AOOY3(#1-R-2}, Siped 3/16" X 7/32*, Cyc.

Figure C-45.
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S/N6AO013(#1-R-2), Siped 3/16" X 7/32", Cyc.

Figure C47.
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S/N6ADOY3(#1-R-2), Siped 3/16" X 7/32", Cyc.

Fiqure C48.
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S/N6A0013(#1-R-2), Siped 3/16" X 7/32", Cyc.

Figure C49.
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S/N6A0013(#1-R-2), Siped 3/16" X 7/32", Cyc.

Figure C51.
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APPENDIX D

X-Y PLOTS
FLYWHEEL VELOCITY VS BRAKE STOP DISTANCE
HIGH SPEED BRAKE ANTI-SKID STOPS
192 INCH DYNAMOMETER
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STOPPING DISTANCE (FT)

Figure D1. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 18-N
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Figure D2, Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 1. (GPM) Flow Rate Code Number 18-N
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Figure D3. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation

25,000 (LBS) Tire Load, 2 (GPM) Flow Rate Code Number 18-N
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Figure D4. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 18-N
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Figure D5. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (L8S) Tire Load, 1 (GPM) Flow Rate Code Number 18.N
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Figure D6. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 2 (GPM) Flow Rate Code Number 18-N
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Figure D7. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 {LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 20-N
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Figure D8. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 1 (GPM) Flow Rate Code Number 20-N
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Figure D9. velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
) 25,000 (LBS) Tire Load, 2 (GPM) Flow Rate Code Number 20-N

161



AFWAL-TR-81-3068

O  unstPED, CYC. # 67
O SIPED, 5/32" DEPTH (CONST) CYC. # 73

<
(=
("=
o
o
o
~N
=3
2 o
E g
[
(=] (=1
w o
(73]
a.
v
-
w
("1}
x o
o
@ 3
o
o \
o Az%sz
8 T T 1 I —
S 00000. 01500. 03000. 04500 06000. 07500. 09000

STOPPING DISTANCE (FT)

Figure D10, Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 0.5 {(GPM) Flow Rate Code Number 21-N
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Figure D-11. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 1 (GPM) Flow Rate Code Number 21-N
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Figure D12. Velocity vs, Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 2 (GPM) Flow Rate Code Number 21-N




APWAL-TR-81-3068

© UNSIPED, CYC. # 70
O stpep, 8/32% DEPTH (CONST) CYC. # 76

-

0120.0 0160.0

FLYWHEEL SPEED (MPH)
0080.0

0040.0

—

0000.0

1 [ I ) 1 T 1
00000. 01500. 03000. 04500 06000 07500 09000.

STOPPING DISTANCE (FT)

Figure D13. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 22-N
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Figure D14. Velocity vs. Brake Distance F-4 MLG, Sfped Tire Evaluation
25,000 (LBS) Tire Load, 1 (GPM) Flow Rate Code Number 22-N
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Figure D15. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
25,000 (LBS) Tire Load, 2 (GPM) Flow Rate Code Number 22-N
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FLYWHEEL VELOCITY (MPH)
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Figure D16. Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 LBS Tire Load, 0.5 (GPM) Flow Rate Code Number 1-R-2
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Figure D17. Vvelocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 1.0 (GPM) Flow Rate Code Number 1-R-2
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Figure D18, Velocity vs. Brake Distance F-4 MLG, Siped Tire Evalution
16,000 (LBS) Tire Load, 2.0 {(GPM) Flow Rate Code Number 1-R-2
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FLYWHEEL VELOCITY (MPH)
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Figure D19. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 3.0 (GPM) Flow Rate Code Number 1-R-2
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Figure D20. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evzluation
16,000 (LBS) Tire Load, 3.0 (GPM) Flow Rate Code Number 1-R-2
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Figure D21. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 1-R-2
Water On After Landing
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Figure D22, Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 1.0 (GPM) Flow Rate Code Number 1-R-2
Water On After Landing
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Figure D23. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 2.0 (GPM) Flow Rate Code Number 1-R-2
Water On After Landing
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CYC# 104, UNSIPED
CYC# 108, SIPED, 7/32" DEPTH {CONST)
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Figure D24. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 3.0 (GPM) Flow Rate Code Number 1-R-2
Water On After Landing
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FLYWHEEL VELOCITY (MPH)

O CYC# 96, MET LANDING
() cYC# 101, WATER ON AFTER LANDING
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Figure D25. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, 0.5 (GPM) Flow Rate Code Number 1-R-2
Uns 1ped
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Figure D26. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
LG.?OOd(LBS) Tire Load, 1.0 (GPM) Flow Rate Code Number 1-R-2
ns{pe
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Figure D27. Velocity vs. Brake Distance F-4 MLG, Siped Tire Evaluation
16000 (LBS) Tire Load, 2.0 (GPM) 1~ ate Code Number 1-R-2
Unsiped
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Cyc# 99, WET LANDING

CYC# 104, WATER ON AFTER LANDING
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Figure D28. Velocity vs Brake Distance F-4 MLG, Siped Tirve Evaluation
16,000 (LBS) Tire Load, 3.0 (GPM) Flow Rate Code Number )-R-2
Uns iped
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Figure D29, vVelocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, Siped, 7/32" Depth {Const) 0.5 (GPM)
Flow Rate, Code Number 1-R-2
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Figure D30. Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, Siped, 7/32" Depth (Const) 1,0 (GPM)
Flow Rate, Code Number 1-R-2
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Figure D31. velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, Siped, 7/32" Depth (Const) 2.0 (GPM)
Flow Rate, Code Number 1-R-2
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CYC# 112, WET LANDING
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Figure D32. Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 {LBS) Tire Load, Siped, 7/32" Depth (Const) 3.0 (GPM)
Flow Rate, Code Number 1-R-2
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Figure D33,

Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation

16,000 (LBS) Tire Load, Code Number 1-R-2
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Figure D34. Velocity vs Brake Distance F-4 MLG,

Sipe Tire Evaluation

16,000 (LBS) Tire Load, Code Number 1-R-2 Water On After

Loading/Before Braking
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Figure D35, Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluvation

16,000 (LBS) Tire Load, Siped, 7/32" Depth (Const) Code

Number 1-R-2
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Figure D36, Velocity vs Brake Distance F-4 MLG, Siped Tire Evaluation
16,000 (LBS) Tire Load, Siped, 7/32" Depth (Const)
Code Number 1-R-2 Water On After Loading/Before Braking
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APPENDIX E 4
{ CALCULATION SHEET
~— Water
/ Nozzle ]
,—— Water SV )
D/ Nozzle ,/Lw\ ; Water Wedne
r 'E; 3 v Dynamometer ; Volume ~ 0
) | P Flywheel . =X Flywheel . —— T ot
) W . i /‘/—- Tire Contact
| | | Patct
;1 —-Tire Contact PR atch
i 1 R
f AWl Patch // a
L. -4 Q.
in {

Calculations For Water Wedge Thickness:

Granted the following calculations and assumptions are not a rigorous attempt ;
at describing the system, the calculations and assumptions made are considered 5
adequate enough to establish trend curves of water wedge thickness as a function
of water flow rate, tire contact patch size and dynamometer flywheel speed.

Assumptions:

1. A1l water passes between tire and flywheel and forms water wedge volume 1
Teees Qi = Ogue
2. Water wedge width = tire contact patch width = w = 10 inches (0.833 feet)
3. Water wedge depth = t inches (unknown)
4. Water wedge area = a = w X t
5. Water Velocity, V = tangential velocity of f]ywhee],Vf
6. Water Flow Rate, Q =V x a v
7. Since 3 =V xa=Vxwxt 1
e 0
V xw

Calculation 1:

Q=7.5gpm = 0.017 feet3/sec

V = 55 mph = 80.7 feet/sec

w = 10 inches = 0.833 feet

t= b= 0017 . 00025 feet = 0.003 inches J

Vxw 80.7 x 0.833

Calculation 2: !

Q=7.5gpm = 0.017 feet3/sec
V = 140 mph = 205.4 feet/sec
w = 10 inches = 0.833 feet
= 9 . 0.017 _ - :
t = W To5 4 5 0833 - 0-000094 feet = 0.0012 inches
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